The interaction between electric charges at rest is described by Coulomb's law:

\begin{equation} \vec{F_2}= k \frac{q_1 q_2 \hat{r_{21}}}{r_{21}^2} \end{equation} where: \begin{equation} k = \frac{1}{4 \pi \epsilon_0} = 8.988 \times 10^9 \frac{N m^2}{C^2} \end{equation} \begin{equation} \epsilon_0 = \frac{1}{4 \pi k} = 8.854 \times 10^{-12} \frac{C^2}{N m^2} \end{equation} The work done ( electrical potential energy) by bringing two charges together from infinity to a certain distance is: \begin{equation} W= \int (Force)\cdotp (displacement)=\int_{\infty}^{r_{12}} (-\frac{1}{4 \pi \epsilon_0} \frac{q_1 q_2}{r^2}) dr = \frac{1}{4 \pi \epsilon_0} \frac{q_1 q_2}{r_{12}}\end{equation}