Optical Properties of Solids
A collection of online tools
Open Source Code:
Github
Optical Properties of Solids – by Mark Fox
*(There could be errors in the code, so please double check your results)
Related Topics
Electrodynamics
Materials can be loosely classified as
Crystalline insulators and semiconductors
Glasses
Metals
Molecular materials
Doped glasses and insulators
Optical Coefficients
The refractive index \begin{equation} n= \frac{c}{v} \end{equation} Beer's Law \begin{equation} I(z)=I_0 e^{-\alpha z} \end{equation} Optical Density \begin{equation} O.D.=-\log_{10}\left(\frac{I(l)}{I_0}\right) = \frac{\alpha l}{\log_e(10)} \end{equation} The complex refractive index \begin{equation} \tilde{n}= n+i\kappa \end{equation} Wave vector expression \begin{equation} k=\tilde{n}\frac{w}{c}=(n+i\kappa)\frac{w}{c} \end{equation} Absorption coefficient \begin{equation} \alpha=\frac{2\kappa \omega}{c}=\frac{4 \pi \kappa }{\lambda} \end{equation} Reflectivity \begin{equation} R=\left| \frac{\tilde{n}-1}{\tilde{n}+1}\right|^2= \frac{(n-1)^2+\kappa^2}{(n+1)^2+\kappa^2} \end{equation} Transmisivity (Incoherent light) \begin{equation} T=\frac{(1-R_1)(1-R_2)e^{-\alpha l}}{1-R_1 R_2 e^{-2\alpha l}} \end{equation} Transmisivity (Coherent light) \begin{equation} T=\frac{(1-R)^2 e^{-\alpha l}}{1-R^2 e^{-2\alpha l}} \end{equation} Complex relative dielectric constant \begin{equation} \tilde{\epsilon_r}=\epsilon_1 + i \epsilon_2 \end{equation} \begin{equation} \tilde{n}^2=\tilde{\epsilon_r} \end{equation} \begin{equation} \epsilon_1=n^2-\kappa^2 \end{equation} \begin{equation} \epsilon_2=2 n \kappa \end{equation} \begin{equation} n=\frac{1}{\sqrt{2}}\left( \epsilon_1 +(\epsilon_1^2 + \epsilon_2^2)^{1/2} \right)^{1/2} \end{equation} \begin{equation} \kappa=\frac{1}{\sqrt{2}}\left( -\epsilon_1 +(\epsilon_1^2 + \epsilon_2^2)^{1/2} \right)^{1/2} \end{equation}
$n$ Real part of $\tilde{n}$
$\kappa$ Imaginary part of $\tilde{n}$
$\lambda$ Wavelength [m]
l [m]
$v=$
m/s
$\alpha=$
$m^{-1}$
$\delta_p=$
$m$
$R=$
$T=$
$\epsilon_1=$
$\epsilon_2=$
Classical propagation
Atomic Oscillators
The reduced mass is given by \begin{equation} \frac{1}{\mu}= \frac{1}{m_0}+\frac{1}{m_N} \end{equation} The restoring force $K_s$ relation is \begin{equation} \omega_0=\sqrt{\frac{K_s}{\mu}} \end{equation} The magnitude of the time varying dipole is given by \begin{equation} p(t)=-ex(t) \end{equation}
Lorentz Oscillator
The displacement x of the electron is governed by the equation of motion of the form: \begin{equation} m_0\frac{d^2x}{dt^2}+ m_0\gamma\frac{dx}{dt} +m_o \omega_0^2 x = eE \end{equation} The time dependence of the electric field \begin{equation} E(t)=E_0 \cos(\omega t + \Phi)= E_0 \Re(e^{-1(\omega t + \Phi)}) \end{equation} By looking for solutions of the form $x(t)=X_0 \Re(e^{-i(\omega t + \Phi ')})$ it is found that \begin{equation} X_0=\frac{-e E_0/m_o}{\omega_0^2-\omega^2-i\gamma \omega} \end{equation} And since $P_{resonant}=Np=-Nex=\frac{Ne^2}{m_0}\frac{1}{\omega_0^2-\omega^2-i\gamma \omega}E$ , and on the other hand $D=\epsilon_0 E +P=\epsilon_0 E +\epsilon_0 \chi E +P_{resonant}=D=\epsilon_0 \epsilon_r E$, then \begin{equation} \epsilon_r(\omega)=1+\frac{Ne^2}{\epsilon_0 m_0}\sum_j \frac{f_j}{\omega_{0j}^2-\omega^2-i\gamma_j \omega} \end{equation} \begin{equation} \epsilon_r(0)=\epsilon_{st}=1+\chi+\frac{Ne^2}{\epsilon_0 m_0 \omega_0^2} \end{equation} \begin{equation} \epsilon_r(\infty)=\epsilon_{\infty}=1+\chi \end{equation} which is valid in a rarefied gas with a low density of atoms.
*Picture taken from:
here
If we invoke the law of causality and apply complex number analysis, we can derive general relationships between the real and imaginary parts of the refractive index, known as
Kramers-Kronig relationships.
\begin{equation} n(\omega)-1=\frac{2}{\pi} P \int_0^\infty \frac{\omega' \kappa(\omega')}{\omega'^2 -\omega^2} d\omega' \end{equation} \begin{equation} \kappa(\omega)-1=-\frac{2}{\pi} P \int_0^\infty \frac{\omega'^2 [n(\omega')-1]}{\omega'^2 -\omega^2} d\omega' \end{equation} where P means we take the principal part of the integral.
Dispersion
A pulse of light of duration $t_p$ must contain a spread of frequencies such that $\Delta v =\frac{1}{t_p}$ to satisfy the uncertainty principle $\Delta v \Delta t \approx 1$. The pulse spreading parameter is the
group velocity dispersion
(GVD). The material dispersion parameter is given by \begin{equation} D=-\frac{\lambda}{c}\frac{d^2n}{d\lambda^2} \end{equation} And the temporal broadening of a pulse is given by $\Delta \tau (ps)= |D| \Delta\lambda L$.
Optical Anisotropy
The
natural anisotropy
called
birefringence
arises because of the different optical properties along different crystlline axes. The properties of a birefringent crystall can be described by the tensor equation $\mathbf{P}=\epsilon_0\mathbf{\chi E}$ or \[ \begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix} = \epsilon_0 \begin{bmatrix} \chi_{11} & \chi_{12} & \chi_{13} \\ \chi_{21} & \chi_{22} & \chi_{23} \\ \chi_{31} & \chi_{32} & \chi_{33} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} \] If the cartesian coordinates correspond to the principal axes of the crystal, then \[ \chi = \begin{bmatrix} \chi_{11} & 0 & 0 \\ 0 & \chi_{22} & 0 \\ 0 & 0 & \chi_{33} \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix} \] During double refraction, the extraordinary ray (e-ray) is the one that does not obey Snell's law of refraction. If the optic axis lies in the plane of the input surface of the crystall (a retarder plate), then the phase difference between e-ray and o-ray is given by \begin{equation} \Delta \phi =\frac{2\pi |n_o-n_e|d}{\lambda}=\frac{2\pi |\Delta n| d}{\lambda} \end{equation} where $d$ is the thickness of the retarded plate.
The
induced anisotropy
can be caused by strain and external fields. The strain induced birefringence is called
photo-elastic effect
. The anisotropy induced by applying an electric field along the direction transverse to the light direction is called the
Kerr effect
, and is given by \begin{equation} \Delta n = \lambda K E^2 \end{equation} where $K$ is the Kerr constant and $\lambda$ the vacuum wavelength. It is also known as the quadratic electro-optic effect.
Optical Chirality
An optical medium that possesses chirality implies that it responds different to left- and right-circular light. A difference in the real part of the complex refractive index gives rise to
optical activity (circular birefringence)
. The rotation angle of the polarization in a medium of thickness $d$ is given by \begin{equation} \theta=\frac{\pi d}{\lambda}(n_R-n_l)) \end{equation} A diffence in the imaginary part of the complex refractive index causes
circular dichroism
. Optical chirality can also be induced by applying a magnetic field, which in transparent materials, give rise to the
Faraday Effect / magneto-optical Kerr Effect
.
*Pictures taken from:
here (Optical activity & Circular dichroism)
and
here (Circular dichroism)
Interband absorption
Interband transitions
The refractive index \begin{equation} n= \frac{c}{v} \end{equation}