Special Relativity

A collection of online tools

Open Source Code: Github

*(There could be errors in the code, so please double check your results)

Related Topics



Einstein's postulate of special realtivity

1st The laws of physics are the same in all inertial reference frames.
*An inertial reference frame is in constant state of rectilinear motion in reference to another inertial reference frame (Not accelerating)

2nd Light propagates through space with velocity $c$ independent of the motion of the source.

Newtonian Physics --> Galilean Transformations
Special Relativity --> Lorentz Transformations


Equations: \begin{equation} \gamma = \frac{1}{\sqrt{1-v^2/c^2}} \end{equation} \begin{equation} m=\gamma m_0 \end{equation} \begin{equation} t=\gamma t_0 \end{equation} \begin{equation} l= l_0 / \gamma \end{equation} \begin{equation} v= c \sqrt{1-1/\gamma^2} \end{equation}







Gamma: $\gamma$=

Mass : $m$=

Time: $t$=

Length : $l$=

Velocity of event as seen by observer at S : $v$=

Lorentz Transformation Equations

\begin{equation} x=ut+x'\sqrt{1-u^2/c^2} \ \ \ , \ \ \ x'=\frac{x-ut}{\sqrt{1-u^2/c^2}} \end{equation} \begin{equation} t=t'\sqrt{1-u^2/c^2} + ux/c^2 \ \ \ , \ \ \ t'=\frac{t-ux/c^2}{\sqrt{1-u^2/c^2}} \end{equation} \begin{equation} v= \frac{v'+u}{1+ \frac{v' u}{c^2}} \ \ \ , \ \ \ v'=\frac{v-u}{1-vu/c^2} \end{equation} \begin{equation} u=\frac{v-v'}{1-vv'/c^2} \end{equation}

Relativistic Doppler effect

\begin{equation} f=\sqrt{\frac{c+u}{c-u}} f_0 \end{equation}

The relativistic triangle


\begin{equation} E = m c^2 = \gamma m_0 c^2 \end{equation} \begin{equation} E_0 = m_0 c^2 \end{equation} \begin{equation} E = E_0 + KE \end{equation} \begin{equation} E^2 = (m_0 c^2)^2 + (pc)^2 \end{equation} \begin{equation} KE = (\gamma -1) m_0 c^2 \end{equation} \begin{equation} p=m_0 c \sqrt{\gamma^2 -1} \end{equation} \begin{equation} \cos \theta = \frac{1}{\gamma} \end{equation} \begin{equation} \theta = \tan^{-1}(\frac{pc}{m_0 c^2}) \end{equation} Units:
E -> [MeV]
p-> [MeV/c]